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1 Introduction

By now we have all learned the quadratic formula, which gives solutions to the equation
ax2 + bx + c = 0 in terms of the coefficients a, b, c and standard arithmetic operations of
addition, subtraction, multiplication, division, and the taking of radicals.

But what about higher-degree polynomials?
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It turns out that there are formulas for cubic and quartic polynomials as well, and our goal
today is to explore the cubic formula, its history, and some of the mathematical questions it
raises.

2 A bit of history

2.1 Babylonians and Muslims

The solution to the quadratic was known by the Babylonians, over 5000 years ago, but it
is closely associated with the work of the Islamic mathematicians, who were active in the
Middle East around 800–1200 AD. One of those mathematicians, Omar Khayyam, was able to
solve cubic equations by intersecting conic sections, but, as negative numbers were viewed as
fictitious, he had 14 different versions of a cubic:

1. x3 = d
2. x3 + cx = d
3. x3 + d = cx
4. x3 = cx + d
5. x3 + bx2 = d
6. x3 + d = bx2

7. x3 = bx2 + d

8. x3 + bx2 + cx = d
9. x3 + bx2 + d = cx

10. x3 + cx + d = bx2

11. x3 = bx2 + cx + d
12. x3 + bx2 = cx + d
13. x3 + cx = bx2 + d
14. x3 + d = bx2 + cx

(In this case, b, c, d > 0.)

Khayyam lacked a general approach to solving cubics, and this remained the case through the
early 1500s.

2.2 The Italians

By 1500, it was known that one could reduce the general cubic

ax3 + bx2 + cx + d = 0 (1)

to the so-called depressed cubic

u3 + eu + f = 0 (2)

So, if one could solve the depressed cubic, one could reverse-engineer a solution to a general
cubic.
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� Exercise

Consider the cubic x3 + 6x2 − 25. Use the substitution x = u − 2 to transform it into a
depressed cubic in the variable u. (Credit: Cal Jongsma)
(If one divides the general cubic Equation 1 by a and substitutes x = u − b/(3a), the
square term is eliminated.)

2.2.1 1535: Fiore vs Tartaglia

In modern academia, a researcher is rewarded for their discoveries: prestige, grant funds, and
prominent speaking slots at major conferences can all follow from a major breakthrough. This
was not the case in Renaissance Italy. University jobs were temporary, and one needed to
continually prove oneself worthy by winning public competitions.

In the early 1500s, the mathematician Scipione del Ferro discovered how to solve cubics of the
form x3 + cx = d. He passed the solution onto his student, Antonia Maria Fiore. Around the
same time, Niccolo Fontana, known as Tartaglia, discovered how to solve x3 + bx2 = d.
Fiore heard of Tartaglia’s boasts, and challenged him to a competition in 1535. They each
posed 30 problems for the other to solve, most (all?) of which boiled down to solving a cubic.
For example:

� One of del Ferro’s problems

A man sells a sapphire for 500 ducats, making a profit of the cube root of his capital.
How much is this profit?

This problem boils down to solving x3 + x = 500. Tartaglia worked to learn the solution
to cubics of that form, while del Ferro was unable to solve the cubics that Tartaglia posed.
Tartaglia won the competition, and with it, money and a job as a university lecturer.
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2.2.2 Gerolamo Cardano (1501–1576)

Gerolamo Cardano was another lecturer in mathematics, as well as a sought-after physician.
Still, he had his troubles; he gambled, he struggled with misbehaving sons, he was jailed during
the Inquisition and more. Nonetheless, decades later, Gottfried Leibniz wrote, “Cardano was a
great man with all his faults; without them, he would have been incomparable.” His collected
works fill 7,000 pages and include the first serious investigations of probability theory.

Cardano wanted Tartaglia’s solution for a new arithmetic text he was writing. Tartaglia resisted
for a while, but finally came to Milan in 1539 to share the secret with Cardano, who in turn
pledged the following:

I swear to you, by God’s holy Gospels, and as a true man of honor, not only never
to publish your discoveries, if you teach me them, but I also promise you, and I
pledge my faith as a true Christian, to note them down in code, so that after my
death no one will be able to understand them.

Tartaglia gave his solution to x3 + cx = d in a poem:

When the cube and its things near

Add to a new number, discrete,

Determine two new numbers different

By that one; this feat

Will be kept as a rule

Their product always equal, the same,

To the cube of a third

Of the number of things named.

Then, generally speaking,

The remaining amount

Of the cube roots of subtracted

Will be your desired count.
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3 Cardano’s Formula

We begin with the depressed cubic u3 + eu + f = 0 (Equation 2). Observe that the binomial
formula gives

(s + t)3 = s3 + 3s2t + 3st2 + t3, (3)

� Exercise

Rewrite Equation 3 as a cubic in the variable s + t. [Hint: the constant term will be
−s3 − t3.]

The work in the previous exercises means that u = s + t is a solution of u3 + eu + f = 0 if s
and t are chosen to solve the system

−3st = e

s3 + t3 = −f.

� Exercise

Let’s finish the derivation of the cubic formula.

1. Solve the first equation in the system above for s.
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2. Substitute the solution for s into the second equation; rewrite as a quadratic equation
in the variable t3.

3. Use the quadratic formula to solve for t3, and then take cube roots to solve for t.

4. Finally, show that

u = − e

3 3
√

−f
2 +

√
f2+4e3/27

2

+ 3

√
−f

2 +
√

f2 + 4e3/27
2 (4)
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Let’s put Equation 4 to good use and solve a cubic that Cardano himself thought about.

� Exercise

In this exercise we’ll consider the cubic x3 − 15x − 4 = 0.

1. Using the general depressed cubic (Equation 2), identify e and f .

2. Now use Equation 4 to write the solution u—but clear the denominator of all cube
roots. Simplify as much as possible to obtain the solution u = 3√2 + 11i + 3√2 − 11i.

In solving this equation, Cardano noticed that the formula could produce square roots of
negative numbers while nonetheless having positive real solutions (we’ll see it shortly!). He
asked Tartaglia about it, but Tartaglia seemed to have no answer, and suggested that perhaps
Cardano had not properly understood how to solve such problems. Cardano later wrote that
working with square roots of negative numbers caused him “mental tortures”.
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It fell to the next generation of Italian mathematicians, particularly Rafael Bombelli, to describe
the arithmetic of what we now call complex numbers. In order to better understand the solution
we just found, let’s take a detour into this larger realm.

4 Complex Numbers

4.1 Forms of a complex number

With the benefit of 400+ years of mathematical development after Bombelli, let’s explore
complex numbers to understand just what 3√2 + 11i + 3√2 − 11i really is.

Definition 4.1. A complex number is an expression of the form a + bi, where a, b ∈ R and
i2 = −1. The set of complex numbers is denoted by C. The real part of the complex number,
denoted ℜ(a + bi), is the real number a. The imaginary part of the complex number, denoted
ℑ(a + bi), is the real number b.

Since a complex number is identified by two bits of information (its real and imaginary parts),
we can visualize the complex numbers in a plane, as shown below.

Figure 1: Points in the complex plane.
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� Exercise

Let’s try to understand what 3√2 + 11i is. If 3√2 + 11i = a + bi, we may cube both sides
to find (a + bi)3 = 2 + 11i.

1. Expand the left hand side, and set the real part equal to 2 and the imaginary part
equal to 11.

2. Verify that a = 2 and b = 1 is a solution to the two equations you found.

3. Do something similar for 3√2 − 11i and verify that a = 2, b = −1 is a solution.

4. Thus, what number is 3√2 + 11i + 3√2 − 11i?

This ad hoc approach is a little unsatisfying. Thankfully, there is another way to take the cube
root of 2 + 11i using the polar form of a complex number.
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Figure 2: Motivating the polar form.

Using elementary trigonometry, we see that for some r and θ,

a + bi = r(cos θ + i sin θ). (5)

Euler’s formula, eiθ = cos θ + i sin θ, allows us to rewrite Equation 5 as

a + bi = reiθ. (6)

� Exercise

Let’s write 2 + 11i and its cube root in polar form.

1. Calculate r.
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2. Give an expression for θ involving the arctangent function, and write 2 + 11i using
both the trigonometric (Equation 5) and exponential (Equation 6) polar forms of a
complex number.

3. Suppose the angle for the polar form of 3√2 + 11i is called α. How must α and θ
relate?

4. Finally, write 3√2 + 11i in polar form.

What we found in the previous exercise is that α = θ/3. We will use the triple angle formula
for tangent to evaluate 3√2 + 11i. Recall that

tan 3α = tan α(3 − tan2 α)
1 − 3 tan2 α

. (7)
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� Exercise

Let’s try to understand what 3√2 + 11i is, this time using the polar form of a complex
number, as well as Equation 7.

1. First, calculate tan 3α = tan θ.

2. Let t = tan α, and rewrite Equation 7 using the value you found in #1.

3. Clear denominators and rewrite your equation from #2 as a cubic.

4. Observe that t = 1/2 is a solution to the cubic you found; thus, tan(θ/3) = 1/2 is a
solution, and α = arctan(1/2).

5. Calculate cos(α) and sin(α), and use these values to show that 3√2 + 11i = 2 + i.
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Figure 3: Visualizing the cube root of 2 + 11i.

4.2 Roots of Unity: Finding all solutions of the cubic

So, Cardano’s formula can produce some surprising identities, like 3√2 + 11i + 3√2 − 11i = 4.
“But wait!” you exclaim. “shouldn’t cubic equations have three complex solutions (with
multiplicity)? Cardano’s formula produces only one!”. As presented here, that is true. There
are two ways out of this box.

One is to use the Factor Theorem, which states that if p(x) has a root α, then x − α|p(x). We
can therefore divide x3 − 15x − 4 by x − 4 to produce the quadratic x2 + 4x + 1 and apply the
quadratic formula.

A second, more interesting, way out of the box is to use roots of unity.

Definition 4.2. Given a natural number n ≥ 1, a complex number z is called an nth root of
unity if zn = 1. An nth root of unity z0 is called primitive if it is not a root of unity for any
m < n.
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� Exercise

Let’s explore some elementary properties of roots of unity.

1. Explain why 1 and −1 are roots of unity for all even n. Are either of them primitive
roots of unity for some n?

2. For k = 0, 1, 2, . . . , n − 1, explain why e2kπi/n is a root of unity.

3. How many distinct nth roots of unity are there? (Hint: if reiθ is a root of unity,
what must r be?)

4. Use Equation 5 to write a formula for the nth roots of unity using the sine and
cosine functions. Use this formula to fully describe the third roots of unity.

5. Suppose n
√

α is a solution of zn = α and that ζn is an nth root of unity. Explain
why ζn

n
√

α is also a solution of zn = α.

6. Bonus challenge: for a given n, how many primitive nth roots of unity are there?
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Primitive roots of unity are nice because they generate the other roots of unity.

Theorem 4.1. Let ζ0 be a primitive nth root of unity. Then the nth roots of unity are given
by 1, ζ0, ζ2

0 , ζ3
0 , . . . , ζn−1

0 .

It turns out that while 1 is always a root of unity, it is not a primitive root of unity for any
n > 1, but the other two cube roots of unity are both primitive. Using the formula you found
for expressing roots of unity in terms of sine and cosine, we find the third roots of unity

ω1 = cos
(2π

3

)
+ i sin

(2π

3

)
= −1

2 +
√

3
2 i (8)

and

ω2 = cos
(2 · 2π

3

)
+ i sin

(2 · 2π

3

)
= −1

2 −
√

3
2 i (9)

� Exercise

Confirm that ω2
1 = ω2.

4.2.1 This is nice, but why do we care?

Well, when we were deriving Cardano’s formula above, we got to the point where we had

t3 = −f

2 +
√

f2 + 4e3/27
2 .

But just as there are two square roots of a real number, there are three cube roots of a nonzero
real number1 c: c1/3, ω1c1/3, and ω2

1c1/3. Each choice of a third root of unity will produce a
different solution to the cubic, and so we collect all three, as the Fundamental Theorem of
Algebra promises.

1And, indeed, there are n complex n-th roots of a nonzero real number.
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� Exercise: Finding all three roots

Let’s return again to x3 − 15x − 4 = 0. We saw that x = s + t, where t =
3
√

−f
2 +

√
f2+4e3/27

2 = 2 + i and s = −e/3t.

1. Using the notation of Equation 9, justify that [(2 + i)ω1]3 = 2 + 11i. (You don’t
need to work it all out by hand if you don’t want to!)

2. Let t1 = (2 + i)ω1 and s1 = −e/3t1. Show that s1 = (2 − i)ω2.

3. Use Wolfram|Alpha or similar to verify that x1 = s1+t1 is a solution to x3−15x−4 =
0.

4. Conjecture the third solution, x2 = t2 + s2. Confirm your conjecture.
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4.2.2 Visualizing the roots of unity

The roots of unity have a pleasing visual form as well.

� Exercise

1. Plot the n-th roots of unity for n = 2, 3, 4 below.

2. How might you plot the fifth roots of unity?

4.3 If time!

Solve the cubic x3 + 6x = 20.
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5 Historical coda

Eventually, Cardano and his student, Lodovico Ferrari, worked out the full solution to the
cubic, but did not have permission from Tartaglia to publish. Cardano evidently heard that del
Ferro found the solution before Tartaglia, and went to Bologna to check del Ferro’s notes. Once
he’d confirmed that Tartaglia was not, in fact, the first to solve the cubic, he felt released from
his oath, and published the full solution to the cubic and quartic in the Ars Magna: “Written
in five years, may it last as many thousands!”

According to Quanta Magazine:

Tartaglia was livid, even though Cardano acknowledged his work in the book.
Tartaglia accused Cardano of theft and of breaking a sacred vow. Cardano left the
rebukes to his loyal attack dog, Ferrari. The acrimonious back-and-forth, in the
form of public pamphlets, continued for many months, leading to a mathematical
duel between Tartaglia and Ferrari and eventually a public debate in Ferrari’s
hometown, Milan. Tartaglia would much rather have battled the esteemed Cardano,
but Cardano refused. Details are scarce, but the debate went terribly for Tartaglia,
especially with the raucous hometown crowd. The next day, when it was time to
continue the debate, Tartaglia was nowhere to be found—he’d left Milan.

Ferrari was flooded with job offers, and Tartaglia’s reputation was ruined. De-
spite many notable accomplishments beyond those related to the cubic, Tartaglia
died penniless and largely unknown, whereas Cardano achieved everlasting fame.
Many argue that the publication of Ars Magna marked the beginning of modern
mathematics.
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