Conference on Unexpected and Asymptotic Properties of Algebraic Varieties (aka BrianFest)
2023-08-11
Definition 1 Let \(I\) be an ideal in a Noetherian ring \(R\), and \(m\ge 1\). Then the \(m\)-th symbolic power of \(I\), denoted \(I^{(m)}\), is the ideal \[ I^{(m)} = \bigcap\limits_{P\in\text{Ass}(I)} (I^m R_P \cap R), \] where \(R_P\) denotes the localization of \(R\) at the prime ideal \(P\).
Theorem 1 Let \(I\) be a radical ideal in a Noetherian ring \(R\) with minimal primes \(P_1, P_2, \ldots, P_s\). Then \(I = P_1 \cap P_2 \cap \cdots \cap P_s\), and \[ I^{(m)} = P_1^{(m)} \cap P_2^{(m)} \cap \cdots \cap P_s^{(m)}. \]
Theorem 2 Let \(R\) be noetherian and suppose \(I\subseteq R\) is an ideal generated by a regular sequence. Then \(I^{(m)} = I^m\) for all \(m\ge 1\).
Example 1 (A point in \(\mathbb{P}^2\)) Let \(R = k[\mathbb{P}^2] = k[x, y, z]\) and \(p\in \mathbb{P}^2\). Then \(I = I(p)\) can be taken to be \(I = (x,y)\), and
\[ I^{(m)} = (x,y)^{(m)} = (x,y)^m. \]
Theorem 3 (Zariski, Nagata) Let \(k\) be a perfect field, \(R = k[x_0, x_1, \ldots, x_N]\), \(I\subseteq R\) a radical ideal, and \(X\subseteq \mathbb{P}^N\) the variety corresponding to \(I\). Then \(I^{(m)}\) is the ideal generated by forms vanishing to order at least \(m\) on \(X\).
For the remainder, we’ll consider two types of ideals:
Definition 2 If \(p_i\in \mathbb{P}^N\) and \(Z = m_1 p_1 + m_2 p_2 + \cdots m_s p_s\) is a fat points subscheme with \(I = I(Z)\), then
\[ I(Z) = I(p_1)^{m_1} \cap I(p_2)^{m_2} \cap \cdots \cap I(p_s)^{m_s}. \]
The symbolic powers of \(I = I(Z)\) are therefore
\[ I^{(m)} = I(mZ) = I(p_1)^{m m_1} \cap I(p_2)^{m m_2} \cap \cdots \cap I(p_s)^{m m_s}. \]
Given a nontrivial homogeneous ideal \(I\subseteq k[x_0, \ldots, x_n]\), how do \(I^{(m)}\) and \(I^r\) compare?
Theorem 4 Let \(I\) be an ideal in a Noetherian ring \(R\). Then:
Containment Problem. Given a nontrivial homogeneous ideal \(I\subseteq k[x_0, x_1, x_2, \ldots, x_N]\), for which \(m,r\) do we have \(I^{(m)}\subseteq I^r\)?
Theorem 5 (Ein-Lazarsfeld-Smith (2001), Hochster-Huneke (2002), Ma-Schwede (2017), Murayama (2021)) Let \(R\) be a regular ring and \(I\) a radical ideal in \(R\) of big height \(e\). Then for all \(r\ge 1\), \(I^{(er)} \subseteq I^r\).
Corollary 1 Let \(I\) be a nontrivial homogeneous ideal in \(k[\mathbb{P}^N]\). If \(m \ge Nr\), then \(I^{(m)}\subseteq I^r\).
Question (Huneke).
When \(I = I(S)\) is the ideal defining any finite set \(S\) of points in \(\mathbb{P}^2\), is it true that \(I^{(3)}\subseteq I^2\)?
Theorem 6 (3.4) Assume the points \(p_1, \ldots, p_n\) lie on a smooth conic curve. Let \(I = I(Z)\) where \(Z = p_1 + \cdots + p_n\). Let \(m, r > 0\).
Conjecture 1 (B. Harbourne) Let \(I\subseteq k[\mathbb{P}^N]\) be a homogeneous ideal. Then \(I^{(m)}\subseteq I^r\) if \(m\ge rN - (N-1)\).
Definition 3 Let \(I\subseteq k[x_0, \ldots, x_N]\) be homogeneous. The initial degree of \(I\), denoted \(\alpha(I)\), is the least degree of a nonzero \(f\in I\).
Definition 4 The Waldschmidt constant, denoted \(\widehat\alpha(I)\), is the limit
\[ \widehat\alpha(I) := \lim\limits_{m\to\infty} \frac{\alpha(I^{(m)})}{m}. \]
Example 2 (A (squarefree) monomial ideal) Let \(R = k[x,y,z]\) and set \(I = (xy, yz, xz) = (x,y) \cap (x,z) \cap (y,z)\). It turns out that \[ I^{(m)} = (x,y)^m \cap (x,z)^m \cap (y,z)^m. \]
Example 3 Given \(I = (x,y) \cap (x,z) \cap (y,z)\subseteq k[x,y,z]\):
\[ \begin{align*} \alpha(I) &= 2\\ \alpha(I^{(2)}) &= 3\\ \alpha(I^{(3)}) &= 5\\ \alpha(I^{(4)}) &= 6\\ &\vdots \end{align*} \] In fact, \(\widehat\alpha(I) = \frac{3}{2}\).
Theorem 7 Let \(I\) be a squarefree monomial ideal in \(k[x_1, \ldots, x_N]\).
There exist unique prime ideals of the form \(P_i = (x_{i,1}, \ldots, x_{i,t_i})\) such that \(I = P_1 \cap \cdots \cap P_s\).
With the \(P_i\)’s as above, we have \[ I^{(m)} = P_1^m \cap \cdots \cap P_s^m. \]
For all \(m\ge 1\), \[ \alpha(I^{(m)}) = \min\{a_1 + \cdots + a_N\mid x_1^{a_1} \cdots x_N^{a_N} \in I^{(m)}\}. \]
We have \(x_1^{a_1} \cdots x_N^{a_N} \in I^{(m)}\) if and only if \(a_{i,1} + \cdots + a_{i,t_i} \ge m\) for \(i = 1, \ldots, s\).
Example 4 Let \(I = (x_1 x_3 x_5, x_2 x_3 x_4, x_1 x_2 x_4 x_5, x_3 x_4 x_5)\subseteq k[x_1, x_2, \ldots, x_5]\). Then
\[ \begin{align*} I^{(m)} &= (x_1, x_3)^m \cap (x_2, x_3)^m \cap (x_1, x_4)^m \cap (x_3, x_4)^m\\ & \cap (x_2, x_5)^m \cap (x_3, x_5)^m \cap (x_4,x_5)^m. \end{align*} \]
Determining if \(x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5}\in I^{(m)}\) is equivalent to determining if the following system of inequalities are satisfied:
\[ \begin{align*} a_1 + a_3 & \ge m \leftrightarrow x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} \in (x_1, x_3)^m\\ a_2 + a_3 & \ge m \leftrightarrow x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} \in (x_2, x_3)^m\\ a_1 + a_4 & \ge m \leftrightarrow x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} \in (x_1, x_4)^m\\ a_3 + a_4 & \ge m \leftrightarrow x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} \in (x_3, x_4)^m\\ a_2 + a_5 & \ge m \leftrightarrow x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} \in (x_2, x_5)^m\\ a_3 + a_5 & \ge m \leftrightarrow x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} \in (x_3, x_5)^m\\ a_4 + a_5 & \ge m \leftrightarrow x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} \in (x_4, x_5)^m \end{align*} \]
To calculate \(\alpha(I^{(m)})\), we wish to minimize \(a_1 + a_2 + a_3 + a_4 + a_5\) subject to the above constraints.
Theorem 8 (Bocci et al. (2016)) Let \(I\subseteq k[x_1, \ldots, x_N]\) be a squarefree monomial ideal with minimal primary decomposition \(I = P_1 \cap \cdots \cap P_s\) with \(P_i = (x_{i,1}, \ldots, x_{i,t_i})\) for \(i = 1, \ldots, s\). Let \(A\) be the \(s\times n\) matrix where \[ A_{i,j} = \begin{cases} 1 & \text{if } x_j \in P_i\\ 0 & \text{if } x_j\notin P_i. \end{cases} \] Consider the following linear program (LP):
minimize \(\mathbf{1}^T \mathbf{y}\)
subject to \(A \mathbf{y}\ge \mathbf{1}\) and \(\mathbf{y}\ge \mathbf{0}\)
and suppose \(\mathbf{y^*}\) is a feasible solution that realizes the optimal value. Then \[ \widehat\alpha(I) = \mathbf{1}^T \mathbf{y^*}. \] That is, \(\widehat\alpha(I)\) is the optimal value of the LP.
Definition 5 Let \(G\) be a (finite, simple) graph with vertices \(x_1, x_2, \ldots, x_N\). The edge ideal \(I(G)\) is the ideal in \(k[x_1, \ldots, x_N]\) generated by the set \[ \{x_i x_j\mid \{x_i, x_j\}\in E(G)\}. \]
Theorem 9 (Bocci et al. (2016)) Let \(G\) be a finite simple graph with edge ideal \(I(G)\). Then \[ \widehat\alpha(I(G)) = \frac{\chi_f(G)}{\chi_f(G)-1}, \] where \(\chi_f(G)\) denotes the fractional chromatic number of \(G\).
Theorem 10 (Bocci et al. (2016)) Let \(G\) be a nonempty graph.
Theorem 11 (J—, Kamp, and Vander Woude (2019)) Let \(I\) be the edge ideal of an odd cycle on \(2n+1\) vertices. Then:
Furthermore, \(I^{(n+1)} = I^{n+1} + (x_1 x_2 \cdots x_{2n+1})\).
Extended in 2023 by Cooper and Noteboom: Symbolic power decompositions of disjoint cycle graphs
Email: mike.janssen@dordt.edu
Definition 6 A \(b\)-fold coloring of a graph \(G\) is an assignment of \(b\) colors to each vertex such that adjacent vertices receive different colors.
Definition 7 The fractional chromatic number is then \[ \chi_f(G) := \lim\limits_{b\to\infty} \frac{\chi_b(G)}{b}. \]
:::