On Symbolic Powers of Ideals

Conference on Unexpected and Asymptotic Properties of Algebraic Varieties (aka BrianFest)

Mike Janssen

2023-08-11

Welcome and Introduction

April 11, 2013

Exploring Symbolic Powers

General Definition

Definition 1 Let \(I\) be an ideal in a Noetherian ring \(R\), and \(m\ge 1\). Then the \(m\)-th symbolic power of \(I\), denoted \(I^{(m)}\), is the ideal \[ I^{(m)} = \bigcap\limits_{P\in\text{Ass}(I)} (I^m R_P \cap R), \] where \(R_P\) denotes the localization of \(R\) at the prime ideal \(P\).

Theorem 1 Let \(I\) be a radical ideal in a Noetherian ring \(R\) with minimal primes \(P_1, P_2, \ldots, P_s\). Then \(I = P_1 \cap P_2 \cap \cdots \cap P_s\), and \[ I^{(m)} = P_1^{(m)} \cap P_2^{(m)} \cap \cdots \cap P_s^{(m)}. \]

Theorem and an Example

Theorem 2 Let \(R\) be noetherian and suppose \(I\subseteq R\) is an ideal generated by a regular sequence. Then \(I^{(m)} = I^m\) for all \(m\ge 1\).

Example 1 (A point in \(\mathbb{P}^2\)) Let \(R = k[\mathbb{P}^2] = k[x, y, z]\) and \(p\in \mathbb{P}^2\). Then \(I = I(p)\) can be taken to be \(I = (x,y)\), and

\[ I^{(m)} = (x,y)^{(m)} = (x,y)^m. \]

Geometric Interpretation

Theorem 3 (Zariski, Nagata) Let \(k\) be a perfect field, \(R = k[x_0, x_1, \ldots, x_N]\), \(I\subseteq R\) a radical ideal, and \(X\subseteq \mathbb{P}^N\) the variety corresponding to \(I\). Then \(I^{(m)}\) is the ideal generated by forms vanishing to order at least \(m\) on \(X\).

Two Contexts

For the remainder, we’ll consider two types of ideals:

  • Ideals of (fat) points
  • Squarefree monomial ideals

The Containment Problem and Ideals of Points

Ideals of Points

Definition 2 If \(p_i\in \mathbb{P}^N\) and \(Z = m_1 p_1 + m_2 p_2 + \cdots m_s p_s\) is a fat points subscheme with \(I = I(Z)\), then

\[ I(Z) = I(p_1)^{m_1} \cap I(p_2)^{m_2} \cap \cdots \cap I(p_s)^{m_s}. \]

The symbolic powers of \(I = I(Z)\) are therefore

\[ I^{(m)} = I(mZ) = I(p_1)^{m m_1} \cap I(p_2)^{m m_2} \cap \cdots \cap I(p_s)^{m m_s}. \]

Our Question (First Draft)

Given a nontrivial homogeneous ideal \(I\subseteq k[x_0, \ldots, x_n]\), how do \(I^{(m)}\) and \(I^r\) compare?

Comparing Powers

Theorem 4 Let \(I\) be an ideal in a Noetherian ring \(R\). Then:

  • \(I^m \subseteq I^r\) if and only if \(m\ge r\).
  • \(I^{(m)} \subseteq I^{(r)}\) if and only if \(m\ge r\).
  • if \(R\) is a domain, \(I^m \subseteq I^{(r)}\) if and only if \(m\ge r\).
  • \(I^{(m)}\subseteq I^r\) implies \(m \ge r\), but the converse need not hold.

Our (General) Question (Final Draft)

Containment Problem. Given a nontrivial homogeneous ideal \(I\subseteq k[x_0, x_1, x_2, \ldots, x_N]\), for which \(m,r\) do we have \(I^{(m)}\subseteq I^r\)?

A Uniform Bound

Theorem 5 (Ein-Lazarsfeld-Smith (2001), Hochster-Huneke (2002), Ma-Schwede (2017), Murayama (2021)) Let \(R\) be a regular ring and \(I\) a radical ideal in \(R\) of big height \(e\). Then for all \(r\ge 1\), \(I^{(er)} \subseteq I^r\).

Corollary 1 Let \(I\) be a nontrivial homogeneous ideal in \(k[\mathbb{P}^N]\). If \(m \ge Nr\), then \(I^{(m)}\subseteq I^r\).

Question (Huneke).

When \(I = I(S)\) is the ideal defining any finite set \(S\) of points in \(\mathbb{P}^2\), is it true that \(I^{(3)}\subseteq I^2\)?

Comparing Powers and Symbolic Powers of Ideals (2010; with C. Bocci)

  • Answered Huneke’s question in the affirmative for \(I(S)\) when \(S\) is a finite generic set of points in \(\mathbb{P}^2\).
  • Introduced the resurgence, \(\rho(I)\), the supremum of the ratios \(m/r\) for which \(I^{(m)}\not\subseteq I^r\), and calculated \(\rho\) for ideals of various point configurations in \(\mathbb{P}^2\).
  • Obtained bounds on \(\rho(I(Z))\) in terms of other invariants of \(I(Z)\).
  • Used these bounds to establish the sharpness of the uniform bound of Theorem 5.

The Resurgence of Ideals of Points and the Containment Problem (2010; with C. Bocci)

Theorem 6 (3.4) Assume the points \(p_1, \ldots, p_n\) lie on a smooth conic curve. Let \(I = I(Z)\) where \(Z = p_1 + \cdots + p_n\). Let \(m, r > 0\).

  1. If \(n\) is even or \(n=1\), then \(I^{(m)}\subseteq I^r\) if and only if \(m\ge r\). In particular, \(\rho(I) = 1\).
  2. If \(n > 1\) is odd, then \(I^{(m)}\subseteq I^r\) if and only if \((n+1)r - 1 \le nm\); in particular, \(\rho(I) = (n+1)/n\).

Conjecture 1 (B. Harbourne) Let \(I\subseteq k[\mathbb{P}^N]\) be a homogeneous ideal. Then \(I^{(m)}\subseteq I^r\) if \(m\ge rN - (N-1)\).

A counter-example to a question by Huneke and Harbourne (2013)

  • Dumnicki, Szemberg, and Tutaj-Gasińska construct a radical ideal \(\mathcal{I}\) of 12 points in \(\mathbb{P}^2\) for which \(\mathcal{I}^{(3)}\not\subseteq \mathcal{I}^2\).
  • The configuration is in the family of Fermat configurations over \(\mathbb{C}\).
  • This negatively answers Conjecture 1 that \(I^{(m)}\subseteq I^r\) if \(m\ge rN - (N-1)\) for homogeneous ideals in \(k[\mathbb{P}^N]\).

Squarefree Monomial Ideals

Oberwolfach Mini-Workshop: Ideals of Linear Subspaces, Their Symbolic Powers and Waring Problems (2015)

Example and Definition

Definition 3 Let \(I\subseteq k[x_0, \ldots, x_N]\) be homogeneous. The initial degree of \(I\), denoted \(\alpha(I)\), is the least degree of a nonzero \(f\in I\).

Definition 4 The Waldschmidt constant, denoted \(\widehat\alpha(I)\), is the limit

\[ \widehat\alpha(I) := \lim\limits_{m\to\infty} \frac{\alpha(I^{(m)})}{m}. \]

Example

Example 2 (A (squarefree) monomial ideal) Let \(R = k[x,y,z]\) and set \(I = (xy, yz, xz) = (x,y) \cap (x,z) \cap (y,z)\). It turns out that \[ I^{(m)} = (x,y)^m \cap (x,z)^m \cap (y,z)^m. \]

Example 3 Given \(I = (x,y) \cap (x,z) \cap (y,z)\subseteq k[x,y,z]\):

\[ \begin{align*} \alpha(I) &= 2\\ \alpha(I^{(2)}) &= 3\\ \alpha(I^{(3)}) &= 5\\ \alpha(I^{(4)}) &= 6\\ &\vdots \end{align*} \] In fact, \(\widehat\alpha(I) = \frac{3}{2}\).

Symbolic Powers of Squarefree Monomial Ideals

Theorem 7 Let \(I\) be a squarefree monomial ideal in \(k[x_1, \ldots, x_N]\).

  • There exist unique prime ideals of the form \(P_i = (x_{i,1}, \ldots, x_{i,t_i})\) such that \(I = P_1 \cap \cdots \cap P_s\).

  • With the \(P_i\)’s as above, we have \[ I^{(m)} = P_1^m \cap \cdots \cap P_s^m. \]

  • For all \(m\ge 1\), \[ \alpha(I^{(m)}) = \min\{a_1 + \cdots + a_N\mid x_1^{a_1} \cdots x_N^{a_N} \in I^{(m)}\}. \]

  • We have \(x_1^{a_1} \cdots x_N^{a_N} \in I^{(m)}\) if and only if \(a_{i,1} + \cdots + a_{i,t_i} \ge m\) for \(i = 1, \ldots, s\).

Example

Example 4 Let \(I = (x_1 x_3 x_5, x_2 x_3 x_4, x_1 x_2 x_4 x_5, x_3 x_4 x_5)\subseteq k[x_1, x_2, \ldots, x_5]\). Then

\[ \begin{align*} I^{(m)} &= (x_1, x_3)^m \cap (x_2, x_3)^m \cap (x_1, x_4)^m \cap (x_3, x_4)^m\\ & \cap (x_2, x_5)^m \cap (x_3, x_5)^m \cap (x_4,x_5)^m. \end{align*} \]

Determining if \(x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5}\in I^{(m)}\) is equivalent to determining if the following system of inequalities are satisfied:

\[ \begin{align*} a_1 + a_3 & \ge m \leftrightarrow x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} \in (x_1, x_3)^m\\ a_2 + a_3 & \ge m \leftrightarrow x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} \in (x_2, x_3)^m\\ a_1 + a_4 & \ge m \leftrightarrow x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} \in (x_1, x_4)^m\\ a_3 + a_4 & \ge m \leftrightarrow x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} \in (x_3, x_4)^m\\ a_2 + a_5 & \ge m \leftrightarrow x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} \in (x_2, x_5)^m\\ a_3 + a_5 & \ge m \leftrightarrow x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} \in (x_3, x_5)^m\\ a_4 + a_5 & \ge m \leftrightarrow x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} \in (x_4, x_5)^m \end{align*} \]

To calculate \(\alpha(I^{(m)})\), we wish to minimize \(a_1 + a_2 + a_3 + a_4 + a_5\) subject to the above constraints.

A Linear Program for \(\widehat\alpha\)

Theorem 8 (Bocci et al. (2016)) Let \(I\subseteq k[x_1, \ldots, x_N]\) be a squarefree monomial ideal with minimal primary decomposition \(I = P_1 \cap \cdots \cap P_s\) with \(P_i = (x_{i,1}, \ldots, x_{i,t_i})\) for \(i = 1, \ldots, s\). Let \(A\) be the \(s\times n\) matrix where \[ A_{i,j} = \begin{cases} 1 & \text{if } x_j \in P_i\\ 0 & \text{if } x_j\notin P_i. \end{cases} \] Consider the following linear program (LP):

     minimize \(\mathbf{1}^T \mathbf{y}\)
     subject to \(A \mathbf{y}\ge \mathbf{1}\) and \(\mathbf{y}\ge \mathbf{0}\)

and suppose \(\mathbf{y^*}\) is a feasible solution that realizes the optimal value. Then \[ \widehat\alpha(I) = \mathbf{1}^T \mathbf{y^*}. \] That is, \(\widehat\alpha(I)\) is the optimal value of the LP.

Application to Edge Ideals

Definition 5 Let \(G\) be a (finite, simple) graph with vertices \(x_1, x_2, \ldots, x_N\). The edge ideal \(I(G)\) is the ideal in \(k[x_1, \ldots, x_N]\) generated by the set \[ \{x_i x_j\mid \{x_i, x_j\}\in E(G)\}. \]

Theorem 9 (Bocci et al. (2016)) Let \(G\) be a finite simple graph with edge ideal \(I(G)\). Then \[ \widehat\alpha(I(G)) = \frac{\chi_f(G)}{\chi_f(G)-1}, \] where \(\chi_f(G)\) denotes the fractional chromatic number of \(G\).

\(\widehat\alpha\) for Edge Ideals

Theorem 10 (Bocci et al. (2016)) Let \(G\) be a nonempty graph.

  1. If \(\chi(G) = \omega(G)\), then \(\widehat\alpha(I(G)) = \frac{\chi(G)}{\chi(G) - 1}\).
  2. If \(G\) is \(k\)-partite, then \(\widehat\alpha(I(G)) \ge \frac{k}{k-1}\). When \(G\) is complete \(k\)-partite, \(\widehat\alpha(I(G)) = \frac{k}{k-1}\).
  3. If \(G\) is bipartite, \(\widehat\alpha(I(G)) = 2\).
  4. If \(G = C_{2n+1}\) is an odd cycle, then \(\widehat\alpha(I(C_{2n+1})) = \frac{2n+1}{n+1}\).
  5. If \(G = C_{2n+1}^c\), then \(\widehat\alpha(I(C_{2n+1}^c)) = \frac{2n+1}{2n-1}\).

Comparing Powers of Edge Ideals

Theorem 11 (J—, Kamp, and Vander Woude (2019)) Let \(I\) be the edge ideal of an odd cycle on \(2n+1\) vertices. Then:

  1. \(I^{(m)} = I^m\) for \(1\le m\le n\).
  2. \(\rho(I) = \frac{2n+2}{2n+1}\)

Furthermore, \(I^{(n+1)} = I^{n+1} + (x_1 x_2 \cdots x_{2n+1})\).

Extended in 2023 by Cooper and Noteboom: Symbolic power decompositions of disjoint cycle graphs

Closing Thoughts

Resources

  • Symbolic Powers of Ideals (2017) by Dao et al. arXiv:1708.03010
  • Eloísa Grifo’s lecture notes
  • SymbolicPowers M2 package

Thanks!

mkjanssen.org/talks/brianfest/Janssen-BrianFest.html

Email: mike.janssen@dordt.edu

Appendices

On the Fractional Chromatic Number

Definition 6 A \(b\)-fold coloring of a graph \(G\) is an assignment of \(b\) colors to each vertex such that adjacent vertices receive different colors.

Definition 7 The fractional chromatic number is then \[ \chi_f(G) := \lim\limits_{b\to\infty} \frac{\chi_b(G)}{b}. \]

:::